FIA Investigator Meeting

May, 2011, Berkeley Ca

Meeting summary

Version 3.1 of March 30, 2012

The focus of this meeting was on aspects of system architecture relating to security,
trustworthy operation, and related issues such as privacy.

This report was prepared from the slides used during the presentations and from an
audio transcript of the discussions that followed. Instead of reporting the comments
of individual speakers, the material has been re-organized around issues and topics.
The goal of this reorganization was to provide a better structure to the report, and
to deal with the fact that the nature of the recording did not permit the correct
attribution of comments to speakers in all cases. However, in a few select places
where a quote was obviously associated with a specific speaker, it has been given
attribution.

This report was prepared by David Clark, who takes responsibility for its actual
content and organization.

Defining security

As a way to help presenters prepare their remarks and to make clear the focus of the
meeting, the planning committee for the meeting prepared a list of possible
questions that each project might choose to answer, questions that tried to capture
the set of issues that fit under the heading of “security”.

1) How does your design deal with attacks directed at the network itself?
Examples: attacks on routing protocols, management protocols, physical attacks
(e.g. coordinated fiber cuts). Supply chain issues.

Does your design assume that the network is built out of separately
administered regions, some of which may be malicious or uncooperative?

Does your design tolerate rogue ISPs and corrupted network elements? What
degree of trust is expected among the regions and how is this developed and
maintained?

1a) To what extent does your design emphasize resilience/availability of the
network in the face of attack, as opposed to resistance to attack?

2) How does your design deal with attacks on communication among end-points?
Examples: unwanted disclosure and modification of content (person in the
middle attacks). Redirection attacks (rerouting to rogue end-points).

Does your design include a framework for communicating elements to

3)

4)

5)

6)

7)

identify each other? Does your design deal with issues of trust (or lack of trust)
among communicating parties?

Does your design place controls on (or require authorization for) various
sorts of end-point actions across the net?

Does your design deal with selective /targeted loss of
availability /performance?

What is your point of view about traffic analysis? Does your design store user
or transactional information?

How does your design attempt to mitigate attacks on end-nodes?
Examples: delivery of malware as part of communication, direct attacks on
vulnerabilities presented via the network interface, espionage and data
exfiltration.

3a) Does your design include methods to deal with multi-stage attacks (using
intermediate nodes previously corrupted)? For example, do you intend to
address prevention, diagnosis, and/or deterrence of multi-stage attacks?

3b) Does your design attempt to mitigate the consequences of end-node faults
and vulnerabilities?

Examples: requirements for application design. Restrictions on patterns of
communication.

Does your design deal with information assurance?
Possible goals: information integrity, authenticity (provenance), detection of
stale versions. Integrity of search.

How does your design deal with DDoS attacks? (Such attacks could be seen as
attacks on the network and attacks on the end-node, but probably worthy of a
distinct category.)

Does your design address the sorts of higher-level considerations listed below?
(These could be seen as covered by the list above, but should be noted as named
issues.)

6a) National security: lawful intercept, traffic analysis.

6b) Privacy; anonymous action. How does your design relate to privacy-
enhancing or anonymizing tools? Does your design raise (or mitigate) issues
related to correlation across stored information?

6¢) Control of delivery of illegal or forbidden content.

6d) Accountability; deterrence. Does your design intend to make jurisdictional
boundaries explicit?

6e) DRM and content management.

What new sorts of vulnerabilities does your approach create? What are the
"new" security problems you will have to resolve? Can you identify points of

(security) failure with severe implications?

8) Has your group agreed on a threat model? What is your point of view?

The format of the meeting

The project participants were joined by two teams of observers: an invited set of
experts in security, and members of the Values in Design Council.

The security experts:
Alan Kirby

Susan Landau

Jim Fenton

Drew Dean

Earl Boebert

Lee Badger

The participants from the Values in Design Council:
Paul Ohm

Deirdre Mulligan

Chris Hoofnagle

Jacob Gaboury

Batya Friedman

Geoffrey Bowker

Each project gave a presentation on the security aspects of their design, which was
then followed by an hour of discussion of the approach. Following those four
presentations/discussions, the two groups of observers were invited to give overall
reactions and thoughts.

Project presentations/discussions

Extensible Internet Architecture (XIA)
The relevant aspects of the XIA architecture are as follows.

* The rich addressing/forwarding mechanisms in XIA allow a packet to carry
several forms of addresses at once. For example, they can carry the content id
(CID) of a desired piece of content, but as well the ID of a service hosting that
content (a SID), or the host where the service is located (a HID) or an
administrative domain in which the CID is known (an AD). This richness is
described as expressing intent, and the other addresses allow various forms
of fallback forwarding and the like. In detail, these various IDs are structured
as a DAG in the packet header, which the router parses to find a suitable ID
on which to act.

* The various IDs, collectively called XIDs, must be self-certifying. For example,
they may be the hash of a public key, or the hash of the content to which they
refer. These ID mechanisms allow the end-points (e.g. the applications or
perhaps code acting on behalf of the actual human users) to confirm that the
action they attempted has completed correctly: that they connected to the
host they intended, got the content they intended, and so on. Put otherwise,
these mechanisms transform a wide range of attacks into detected failures.

* The architecture of XIA will attempt to provide tools to isolate the source of
the attack/malfunction that caused the failure. While these were not
elaborated in the presentation, the XIA team assumes that they will sit above
the architecture—diagnostic tools that can be run as needed.

* XIA gives the end-point options for control to bypass or route around these
points of failure. These include the detailed routing choices in SCION, the
diversity of options for binding human-oriented names to XIDs, classes of
XIDs that support replication and caching, and the like.

* The SCION mechanisms provide a structure to break up the overall network
into what are called trust domains, which allow a variety of end-point
controls over routing.

Requiring that XIDs be self-certifying is part of the mechanisms that allow
confirmation that the intended action has actually occurred. However, this step is
only part of the scheme. XIDs provide a means to confirm that the correct action
occurred once the end points have the correct XIDs. As a first step, most network
operations start with “higher level” names that describe what is desired, such as
URLs, email addresses, and the like.

* Since different applications may involve different sorts of high-level names,
the XIA architecture does not define how these names should be converted to
XIDs in a trustworthy way. The XIA architecture gives mandates to
application/support service designers as to what the application and its
supporting services must do, but does not dictate a mandatory way of doing
it.

The class of mechanisms that an application uses to provide these binding is called
trust management mechanisms, and XIA provides an API (a “narrow waist”) for an
application to invoke these.

Discussion
In the discussion that followed the XIA presentation, the following issues came up.

Security implications of intents. While intents may lead to more efficient network
utilization, and contribute to the goal of availability by finding nearby copies of
content, finding an available service provider (a form of anycast), and the like, they
may have serious consequences with respect to privacy and traffic analysis. A visible
CID in the header seems to provide a very fine-grained revelation of what a specific
user is doing, and the source HID in the packet can tie the action back to a user.

One response to this is that the source (and the application acting on behalf of the
source) has the option of using a persistent HID or a short-lived one. Hosts can have
more than one HID. If the source domain can route on an ephemeral SID (sort of like
the random source port in the current Internet), then there need be no source HID
in the packet, which can partially obscure the identity of the sending host, and also
allow process migration. Another answer is that the full expressive power of intents
need not always be used: the packet could have only an SID, with (for example) a
CID encrypted inside the packet so that only the end-node can see it. However, these
choices may be defined by what the application designer does, not the actual user at
the moment of execution.

There was a question as to whether the DAG addresses could permit certain sorts of
abuse, such as making a packet seem to come from the wrong location. It was
claimed that one problem with source routes are the security vulnerabilities they
create, and DAGs seem like source addresses. One answer is that DAGs are less
general than source addresses, and as well some sort of policy restriction may need
to be imposed on the sorts of DAG addresses that can be used in specific contexts.
This seems to imply a complex bit of analysis as to what sorts of DAGs represent
risks in particular contexts.

Who is the user? Several of the slides in the XIA presentation referred to “users”. In
some cases, this may refer to the actual user at the time of execution, and in other
cases refer to the “user of XIA” who is the application designer. Clarity of distinction
between the two is important, as (for example) in the discussion above of which
“user” has control over how much is revealed in the packets. If the project really
wants to look at “users”, they must look at real users: kids with games, the third
world, the people at the edges.

Key management. Several forms of XIDs, in particular HIDs and SIDs, use public
key/private key pairs as the mechanism for self-certification. This approach implies
a number of issues specific to the design. If a host is penetrated and the private keys
are stolen, there needs to be some form of revocation. It is possible that the trust
management mechanisms are part of this (e.g. binding may time out), but this needs
careful consideration. It was also pointed out that the “dog ate my private key”
problem is critical and hard to solve. The more copies of the private key are around
(both to protect from total loss and allow replication of services) the more chances
of it being stolen. The dependence on key pairs as the foundation of XIA security
may imply some very daunting operational requirements. See below.

Classes of principals. In XIA, elements identified by XIDs are principals. There was
a question as to whether content, service and host were the only ones, and what was
required to make a new one. The team responded that the only reason to add a new
class of principal at the XIA level is that it allows the network to provide a service
(e.g. routing, caching) at that level. Otherwise, the function should just as well be
done at the service layer. The term “overlay” was used, but the relationship between
overlay and service was not clear. The team speculated that new classes of
principals would be invented infrequently, since the XIA infrastructure would have

to evolve for the new class of ID to be useful. Two possible examples of future
classes were DTNs and multicast. The team invited the listeners to think of possible
new classes to challenge their thinking. SCION routes can be integrated into XIA as a
new type of XID.

There was a question as to why the host is a class of principal, since it seemed as if
services were the real building block. There were several answers: HIDs will be
useful for low-level issues such as management. HIDs provide the migration path
from today’s host-centric Internet. Finally, once a stateful connection to a service
has been established, a HID can be used to select the particular version of the
service that has the state. However, this could perhaps be done with an ephemeral
SID on the server side, which would enable the process migration mentioned
elsewhere.

Traffic analysis. In the list of security objectives for XIA, privacy was mentioned,
but there was no specific mention of traffic analysis. Several of the invited
discussants strongly made the point that traffic analysis (looking at headers, not
content) is a very powerful tool for intelligence. Patterns of interaction reveal a
great deal, and can be a means to break operations security or opsec, and discover
that “something new and different” is going on. As a means to model what the
adversary can do, one should not begin with a catalog of mechanisms, but a catalog
of the potential adversaries that can observe aspects of the traffic. One should list
what they can see individually, and then ask what is revealed if they can share
knowledge from different parts of the network.

One of the team members observed that some of the XIDs can be transient, including
the HID of the host retrieving content. However, it would seem that CIDs, which are
a hash of the content, must by design be persistent, which would facilitate the long-
term tracking of the dissemination of a known piece of content over XIA.

Privacy and accountability. Some of these same issues came up in discussions
about privacy and accountability. The XIA team commented that one of their design
questions is the extent to which this balance should be in the infrastructure vs. in
the applications. There was a comment from the room that user behavior may be
different if users are identified and held accountable, and the team said that Sara
Kiesler was researching this question. However, this did not resolve the question of
XIA vs. higher-level mechanisms. The team commented that in their view, it would
be desirable if XIA could be configured to provide a different balance (at the XIA
level) in different deployment contexts. This is a harder challenge than a fixed
outcome.

Trust domains and scopes. There was considerable confusion as to what a trust
domain was. Given the different uses of the word trust in the discussion, a number of
different objectives could be presumed. Mechanically, within the SCION system,
trust domains seem to be routing regions that are collections of administrative
domains (ADs). Within a TD, an end node can express controls/preferences over
how routes are formed between the end-node and a path construction beacon (PCB),

which is a point within the core of the TD where ISPs (sort of like tier 1 ISPs today)
patch routes from end-nodes together and compute routes to a PCB in another TD as
necessary. This seemed to leave a number of questions unanswered.

* What does this have to do with trust? Are we “trusting” that the specified
route will be followed between the end-node and the PCB?

* Does this design imply that the end-node must trust its access ISP? There are
many real-world situations where the users must use an ISP they do not
trust.

* TDs were described as matching legal jurisdictions (as an example). Why is
this the right modularity? Does the design depend on legal sanctions to
discipline the operators to behave in a trustworthy way? Why would there be
bigger or smaller TDs?

e There was a PKI associated with TDs, but the role of the PKI was not clear.

In the subsequent discussion, it was made clear that in the XIA design the TDs are
only concerned with the issue of path availability, and no other aspect of trust.
Within a TD the users have control over AD-level routing (among the valid routes
they have been offered), and if traffic is between a source and destination in the
same TD, the end-points can be assured the traffic did not leave the AD. But it is not
clear what assurances are available when the traffic leaves the TD. This concern was
raised in the context of increased use of “cloud-based applications”. Many countries
are too small to sustain an internal cloud infrastructure, and many popular
applications (such as Facebook and Youtube) are almost global in scope. This fact
raised doubts that most traffic will remain inside a TD, which in turn raised doubts
about the power of the TD mechanisms to improve overall operational
security/availability/control.

One of the roles of a TD is to isolate routing and other control messages. Spurious
routing messages from outside the TD cannot disrupt the internal routing of the TD.
One way to explain this that in the current Internet we have two levels of routing,
IGP and EGP, where the EGP should not be able to disrupt the IGP, and in SCION we
have three, the AS IGP, the TD and the global, and at each level, the outside should
not be able to disrupt the inside. This raises a number of questions, such as whether
ISPs inside different trust regions can directly peer.

XIA permits the use of mechanisms such as TOR, and the SCION work includes a
TOR-like mechanism. This can be used to tunnel out of a region where there is no
trust. However, the interplay between lack of trust, the use of intents and traffic
analysis seems complex and nuanced, and may require careful thought as part of the
design. Again, good security in practice may require a high-level of attention to
operational issues, which ties back to the question of “who is the user?” and what
level of sophistication is required of each class of user.

There was considerable doubt about the use of “scopes” (parts of the net in which
more or less is revealed) to protect the user from traffic analysis (and complete
profiling) if the analysis can be carried out over any extended time period. And

given the diverse patterns of trust (I trust my ISP but not yours, or the other way
round), the interplay between the use of something like TOR to hide information
and the desire to reveal intents only in trusted regions seems more complex than
the XIA mechanisms could realize.

The idea that the application designer has control over how these tools are mixed
(e.g. how scoping/tunneling is done) raised concerns. There is no reason to assume
that the application designer always represents the interests of the user, or that the
user can understand the consequences of complex behaviors that are embedded in
the application. Something more is needed as part of a complete story.

Performance: Since this meeting was about security, performance came up only
indirectly. But in the discussion about the performance of long distance connections,
it was asserted that tier 1 ISPs carry most of the long distance traffic, and on this
basis, SCION paths were not materially longer than BGP paths. However, the current
trend in the Intenet is toward private peering among access and content, which
raises the question of how SCION deals with paths that cross TDs but are private
arrangements among the ADs in the two TDs.

On the other hand, the XIA team noted that data is migrating to follow the user, and
the CIDs may allow local retrieval of content. However, there is a general question as
to whether the efficiency of this routing scheme is dependent on various
assumptions about traffic patterns.

Verification: What approach will be taken to reason about the correctness of the
system and its properties. It was agreed that long, formal proofs would not be
effective. But is there some sort of semi-formal process, perhaps some sort of
diagram or representation that can help. The team noted that as a practical matter,
verification can take as much time as design, and the scope of the project limits what
can be done.

With respect to trust, one suggestion was to construct some sort of matrix of
principals and actors, and describe the trust relationship between them. What
would the consequences be of violating this trust?

Evolution: Following on the discussion of XIDs and the possibility of adding new
ones over time, the question was raised as to whether the encryption algorithms can
be changed over time. If one is found to be flawed, or is rendered vulnerable by
Moore’s law, how much of a problem is this for the architecture?

Regulation and transparency: The sophistication of the addressing and the range
of trust management mechanisms seems to give many more actors options for
control, perhaps very nuanced control, over what happens in the system. The
debates today over network neutrality are about imposing external restrictions on
what ISPs can do, in a context that is much simpler than XIA. For example, in XIA will
there need to be potential regulation over which content is cached? As a starting
point, XIA should provide means to make the control actions take by different actors
visible or transparent. Visibility is one of the means to discipline actors.

Summary—XIA

Control of XIA addresses: in several different parts of the discussion, the question
came up as to which actors would have control over what is in an address: whether
there is a CID, for example, or a HID. It seemed as if some of the answers were
inconsistent. One answer was that the application designer had control. Another
answer was that the “user at the source” would have control, perhaps to control
whether a cached copy of content was acceptable or whether the request has to go
to the service. It was stated that different addresses (including options for tunnels
and selective revelation of parts of the address) might vary based on the trust that
the “user” placed in various parts of the network. Since this happens at execution
time, this is not the application designer but the user or an agent helping the user.
Finally, of course, what is in an address is determined by what is returned from the
“name lookup function”. It would be useful to write down in one place all the factors
that have to be taken into account in fixing the address being used, and making sure
that all these uses are consistent.

Vulnerabilities: There were two aspects of the system that seemed as if they might
represent points of vulnerability: key management and the trust management
mechanisms that map human names to XIDs. Key management is tricky and
complex, and given that the project said that they were not addressing the issues of
host security (which seems reasonable) it is not clear how this system can be secure
in practice. If it is to be anything but a toy system, the key management tools must
be designed as a part of the system, and a team participant that plays the role of the
adversary must be part of the design process from the beginning. The tools that map
from name to XID are outside the architecture, and by design there will be multiple
of them. If they are vulnerable, the attention at the XIA level will be fruitless. Is there
some sort of “end-to-end” check that can validate the human-meaningful name as
well as the XIDs?

Nebula

With respect to security, the Nebula approach is based on the presumption of a
clean division of responsibility between network and end-points. The end-points are
responsible for confirming that the connections have reached the correct places, and
that integrity and confidentiality are preserved (e.g. by encryption). The
responsibilities of the network are highly reliable availability, predictable service,
and assuring that the requirements (policies) of all the relevant actors are taken into
account as traffic is routed across the network. The relevant actors include
networks themselves, and as well higher-level service elements.

An example, as developed in the group discussion, will help to illustrate what is
meant by that last responsibility. Nebula, like essentially all architecture proposals,
assumes that the network is made up of regions that are separately built and
operated, often by private-sector providers. These providers will have policies
concerning which sorts of traffic (e.g. for which classes of senders and receivers)
they will carry, and so on. Today, the only tools that can be used to express these
policies are the various options within BGP, which may be very limiting. In addition,

the application may want to control the routing of traffic between higher-level
service elements. A simple example might be a “packet scrubber” that tries to detect
and remove malicious traffic, or a higher-level processing element such as a virus
detector in email. A service might wish to assert that it will only receive packets that
have first gone through the scrubber, even though the scrubber is not directly
adjacent to the service. In Nebula, the network itself can enforce this sort of routing

policy.

To do this, the Nebula architecture has two relevant parts: a data plane (NDP) that
can enforce arbitrary policies, and a control plane (NVENT) that can compute these
policies. While the control plane is still under development, there is a specific
proposal for the data plane, and a claim that it can enforce arbitrary policies with
respect to valid routes through sequences of actors.

Nebula is not a pure datagram network—to send a packet the NVENT policy
mechanisms must first compute and return to the sender a string of information
that will authorize the data plane to forward the packet. NDP is “deny by default”;
without this information to put in the packet, the packet will not be forwarded.
What is returned by NVENT is a “proof of consent” (POC), which is a
cryptographically signed sequence of values that (for each step in the
processing/forwarding) encode all the previous steps that must have processed the
packet before this actor receives it. Clever use of crypto and XOR allow this to be
coded in a way that is linear in the number of actors. As the packet is forwarded,
each actor that processes the packet computes, using a similar set of methods, a
“proof of path” (POP), which allows each subsequent actor to confirm that the
previous step actually did process the packet. Thus, by comparing at each stage the
POP at that point with the POC that was computed by NVENT for that stage, the NDP
can confirm, for each actor in the path, that the packet has already passed through
all the required previous actors.

Nebula can improve reliability by allowing the sender to ask NVENT for multiple
routes (e.g. multiple POCs), so that if one fails another one can be tried. Or for
improved performance several could be used at once. So one of the consequences of
the rich set of policy options that NVENT can handle is a much richer set of routing
options than the single option computed today by BGP.

Discussion

Proof of path. In the discussion, there was a lot of attention spent on clarifying
exactly what the POP actually confirmed. The Nebula team made clear that all it was
intended to confirm is that the correct set of previous actors has signed the POP. It
cannot confirm the actual path: if some ISP sends the packet via a second ISP that
was not in the POC, but which forwards it anyway, or if the packet is copied, and so
on, the POP cannot detect or prevent this.

Mechanism. One set of questions in the discussion concerned the actual
mechanisms by which keys are managed and used. However, the discussion did not
allow time to fully explore this issue.

Integration of cloud and network. Another set of questions explored the assertion
that a distinctive aspect of Nebula was that the cloud and the network are working
together. It was not clear from the talk exactly what this implies. The highly
redundant paths that NCore can provide between the data center and the router are
an obvious example, but it was not clear how this synergy manifested in NDP and
NVENT. One example that the Nebula team gave was that the rich policy options of
NVENT could allow an application to obtain a service with a higher degree of
performance, reliability, availability and so on, which would allow the application to
move data in ways it would not otherwise consider reasonable. So the potential
richness of the NVENT policies can change the way applications are designed.

Consequences of rich tools for policy control. Several of the questions revolved
around the consequences of the rich control implied by NVENT. The optimistic
consequence of NVENT is that the end-user can find paths that meet his needs for
performance, trust and the like. The pessimistic consequence is that the options for
control give network operators and third parties rich tools to control, selectively
block, observe and regulate what happens on the network. The general question is
how can a control plane such as NVENT, which was not described in any detail, be
designed so that the desired parties have sufficient control. The specific example in
the question related to the case of the insulin pump: how can “the system” confirm
that HIPPA is observed, the service of sufficient reliability is actually provided, and
So on.

A related question had to do with surveillance, including in the control plane. What
is revealed there, and is every aspect of the service request revealed to all the actors
along the path? One questioner asked if this did not make traffic analysis much
easier. In general, what can be learned from observation, both in the data plane and
in the control plane? The team responded that highly decentralized systems can
make traffic analysis harder, but cannot prevent it, especially since today we see
powerful actors such as Google with monitors on 80% of the Internet.

With respect to censorship and its mitigation, the Nebula team described a vision in
which a large number of web sites could set aside a fraction of their resources to
allow relay access to other sites. This approach would allow someone trying to
bypass censorship to “blend into the crowd” by appearing to be going to an innocent
site. The controls in NVENT might allow the web site to distinguish between its
traffic and traffic it is relaying, but this in turn raises questions about which other
agents in NVENT could see that distinction and recognize this as a bypass.

Who is the user? The role of the user came up in the answer to several questions. In
some cases, it seemed to imply the application designer. In other cases (as with
different users with different concerns about the privacy of their medical records) it
was the actual end user. This tension raised two concerns. The first is whether the
typical end-user could translate between high-level expressions of preference (e.g.
more or less privacy) and the resulting inputs to NVENT. The other is what the
interplay was between the application designer, the end-user, and other actors that
might want to have control on behalf of the user. There was also a question as to

how an end-user could look at the address (e.g. the sequence of POCs, labels and the
like) and understand what they meant—what service they actually described. This
system seems to raise some substantial user-interface issues. Finally, it was
observed that the complexity of dealing with the options in NVENT might tempt
most application designers to take the default option, and end up with routing
equivalent to BGP.

Patterns of communication. While the discussion tended to focus on the packet
level of the architecture, the question was raised as to whether, and in what ways,
this system might change the higher-level pattern of communication. As Batya
Friedman said: “Any design makes some things easy, some things hard, and some
things impossible. Is there a way to look at this system and decide what behaviors
are in those three categories?” This question relates, among other things, to the
discussion above about censorship and bypass.

Cloud policy—jurisdiction, antitrust, and the like. This question related to data
being stored in the cloud, and what policies might be enforced to regulate data
movement. For example, could the POC/POP be used to determine what
jurisdictions the data had visited? Does the network facilitate data portability, or
allow companies the secretly exchange information and collude in the cloud? The
discussion suggested that while NVENT is designed to help with moving data,
policies related to the proper treatment of data were to a larger extent must be at a
higher level.

Overhead: One question concerned the cost of the big headers, especially for small
packets and TCP acks. The team suggested that many of the packets today are large
(e.g. video) and the system need not use TCP, but perhaps an alternative with fewer
acks.

Additional questions: Since paths seem to be pre-computed in NVENT, how does
this affect mobility of end-nodes? Does Nebula contain tools to validate that paths
are working as committed? Perhaps a user could create several paths and try them
to see which is most trustworthy.

MobilityFirst

The MobilityFirst architecture is motivated by the desire to deal with issues raised
by mobile end-nodes—in particular movement of devices from one network access
point to another, and transient outages when devices become unreachable. In this
architecture, naming/addressing is done at two levels. At a higher level, there are a
set of alternative Naming Certification Services (NSs) that map from some host,
service, sensor, content or context (a context is a set of things that match some
criteria) to a flat ID, a GUID. (A GUID also contains a Service ID, or SID, which is
similar to the TOS field in IP in that it contains well-known numbers mapped to
service descriptions such as unicast/multicast/anycast, delayed delivery, privacy-
preserving, content query, etc. The SID is used by routers to decide how to process
the packet.)

At alower level, there is a service, the Global Name Resolution Service or GNRS, that
maps from a GUID to its current location, which is a Network Address, or NA. A
network address has a network part NA:N and a port part NA:P.

The network data unit is not a packet, but a larger data unit (sort of like an
Application Data Unit) called a PDU. When a PDU is sent, both the destination GUID
and the destination NA are included in the header. This allows rapid forwarding
based on the NA:N, but also allows elements in the network to deal with mobility
and redirection by making dynamic queries of the GNRS as the PDU is moving
through the network.

Both the GUID and the NA:N are public keys (or hashes of public keys), so the
namespace of NAs is flat. Their design assumption is that there might be as many
NA:N values as there are routing table entries today. When the GNRS is queried to
look up the NA associated with the GUID, what is returned is actually a “locator”,
which is an assertion signed by the owner of the GUID that the NA is valid. This
allows for the prevention of certain forms of attack, such as a “backscatter” DDoS
attack, in which a rogue endpoint R sends SYN packets to machines all around the
network with the source address (R,NA), where NA is the target of the attack. All
these machines respond to the SYN with a packet to NA, which has to process and
drop them. Allowing the end-point verify a signed locator for NA prevents this sort
of misbehavior. Further, since the locators are signed, and thus “self-validating”,
they can be cached and retrieved from anywhere, with the assurance that they are
not forged.

The actual process of transport breaks the PDU up into packets, which are
transported using a protocol perhaps like TCP (but tuned to the failure and loss
modes of wireless systems). PDUs are forwarded in a staged manner, and may be
reassembled from the component packets at intermediate points. If a subsequent
network is impaired or the destination is unavailable, the PDU can be stored until
forwarding is possible.

MobilityFirst, like XIA, tries to avoid the problems that have arisen in the current
Internet with the single root of the DNS, by allowing multiple Name Certification
Services to co-exist.

Discussion

Defining “User”: As with XIA, there were a number of questions about what was
meant by “user”, and what was expected of the user. In response to a question as to
the role of the user, the MobilityFirst team pointed out that they cannot verify the
physical identity of the user operating a device—if the device has the credentials to
confirm its GUID, they will take it as valid. Users can have more than one device,
and devices can have more than one interface: the GUID is in common, the NAs
differ. So the architecture tries to give a clean identity/location split.

Another conversation centered on the role of the user as giving trust guidance and
choices. Today, users have many trust choices made for them (e.g. the list of CAs in

the browser), and the MobilityFirst team would like to avoid this by giving the user
more explicit choice. However, some of the participants argued that the typical user
would not know what to do with this choice. This answer triggered a range of
discussion, as to how to provide guidance to the user in exercising these trust-
related choices in an effective way. For example, different groups of users might
settle on a common Naming Certification Service for their common tasks, based on a
collective trust decision. See the discussion of choice in the final discussion section.

Multiple GNRS: There was some confusion in the discussion about the design of the
GNRS. The MobilityFirst team said that there could be multiple such services, not
just one, but this left people confused as to how a GUID updated its GUID-NA
binding. Did it have to update it in all the GNRS services, or just one? If not all of
them, then how would a source end-node or a router in the network know which
GNRS to use to look up the current NA. The answer seemed to be that there was a
baseline GNRS, but there could be other services that cached or replicated the
information.

Higher-level services in the routers: According to the MobilityFirst white paper,
their design includes the option of downloading third-party code into their
routers—active networking. This was described as an option that had not yet been
explored, but which was not precluded. Routers might run trusted code, with some
sort of flag in the header to indicate that the packet should be deflected to that code.
Services might include anonymous routing. However, it was not clear from the
discussion whether caching (e.g. dealing with transient wireless disruptions) was a
part of the core architecture or a trusted third-party service.

Storage in the net: There was some confusion about storage of content in the
network. The architecture included a means to hold content during periods of
wireless impairment. It seems that the expectation is that these events would be
brief—short enough that end-to-end confirmation of delivery, challenge response
protocols and the like are still viable tools. This reduces the need to trust the
intermediate storage nodes, as one must if (as with email) there is no delivery
confirmation. On the other hand, there were discussions of systems like CDNs and
Torrents, and it was not clear if these were being contemplated as part of the same
storage capability.

Traffic analysis and revelation of intent: As with all of these systems, the
increased expressive power of the header, with the GUID as well as the NA in the
packet, raised concerns about the revelation of rich transaction information. The
fact that packets are reassembled into a larger data unit and (on occasion) stored in
the network seemed to make the concerns much worse. The MobilityFirst team
responded that GUIDs are opaque, and there is no easy way to tell what you are
seeing. There was some dissatisfaction with this answer, since the observer may be
tracking the flow of known pieces of content which have been previously identified
and associated with their GUIDs. (Consider the story of the FBI tracking child
pornography discussed elsewhere, where they find the content, and then passively

observe everyone who retrieves it before acting. In this system, because they have
found the content, they know its GUID.)

Named Data Network (NDN)

The NDN architecture is distinctly different from the current approaches to
addressing and forwarding. In NDN, there are two sorts of packets, interests and
content. An interest packet is sent to request some named content, and the content
packet returns that named content. In neither case is there a “host” address in the
packet, only the name of the desired information.

An interest packet contains the name of the content being requested. A content
packet contains the name of the content, the data itself, and a signature, which
confirms the contents, as described below.

Names of content are hierarchical, and begin with the authoritative owner of the
content, followed by the name of the specific content. Any owner/creator of content
has a public/private key pair, and uses the private key to produce the signature.
Thus, anyone with the public key of the owner can verify the content packet: in
particular the integrity of the content and the binding to the name.

A distributed mechanism will allow nodes to build up a catalog of public keys for
different owners, a key certification graph. In this way, routers can learn public keys,
which will allow them to validate packets (as appropriate) as they forward them. (In
particular, forged content packets that claim to match an interest can be detected in
the net, not just at the final end-point.)

The name of data also describes its location. When information moves to a new
location, there is a variation of a content packet called a link that encapsulates a
content packet and is signed by the operator of the current location. This signature
allows anyone with the public key of the current location to verify that the location
named in the packet is the actual sender of this packet.

It is assumed that on top of this mechanism there will be a variety of search tools,
content providers and the like that, among other things, provide for translation
between other sorts of names and queries and the specific names used by NDN.

A key technical aspect of NDN is that when an interest packet is routed toward the
location of the content, a copy of the interest is kept at each router. In NDN, there is
thus per-packet state in each router along the path followed by the interest. The
copy of the interest records the router port from which the interest came, as well as
the name of the content being requested. The interest packet itself does not carry
any “source address” from where the interest originated: this information is
recorded in the per-packet state in all the routers along the path back to the original
requestor.

When a router forwards a content packet, it has the option of keeping a cached copy
for some period of time. This cached copy can be used to satisfy a request, rather
than having to fetch the content from the original location.

Security. In this architecture, integrity and confidentiality of content can be assured
by the use of encryption. The major differences that follow from this novel design
relate to availability, DDoS, filtering, traffic analysis and privacy.

Availability. The ability to cache copies of popular content means that they can be
retrieved even if the original location is down or the path is missing. In principle,
anyone with a copy of the content can respond to an interest, so clever protocols for
disseminating an interest can allow very robust retrieval. In particular, because the
per-packet state in the routers eliminates the risk of a looping interest packet, these
packets can be sent out using multiple paths

DDoS. Certain sorts of DDoS attacks cannot be carried out in this architecture. A
node cannot be flooded with unwanted content packets, since one cannot address a
content packet to a specific destination. The correct destination of a content packet
is stored in the per-packet state laid down by an interest packet in the routers, so a
content packet will only go where an interest packet has created the state. A node,
however, can be flooded with interest packets. A server cannot be overloaded by
repeated requests for specific content, since the content being requested will be
cached in the network, so that most of the requests will never reach the server.
Certain attacks will still reach the server, such as interests that request non-
cacheable content or content that does not exist.

Filtering. Since interests and content packets do reveal the name of the content, it is
easy for a router to drop packets referring to specific content. Since the name is not
a hash but a somewhat meaningful name, this sort of filtering takes less effort than if
it were necessary to first identify the content in some higher-level name space and
then track down the matching content identifier.

Traffic analysis and privacy. In the discussion about NDN, there was a long
consideration of these issues. Because the interest packets carry, in the clear, the
name of the content (not as some sort of flat hash of a key but as a structure that
indicated the source as well as the actual item), there is a lot revealed about what is
being released. On the other hand, since the interest and content packets do not
carry any identity of who requested the content, there is a different form of
obscuration going on. If one can observe the very first router that gets the interest,
one can see exactly who requested the content, but as the observer moves away
from the requestor and toward the source, the interest (and its stored record) only
indicate the direction from which the interest came. This different balance of
features, with different implications for different sorts of monitoring, triggered a lot
of discussion and seems to call for careful analysis of options for attack.

Because the interest packet does not carry the identity of the requestor, that
information is hidden by default from the content provider. If the content provider
requires that information, it will have to be transferred as part of a higher-level end-
to-end protocol.

A user, to reduce the risks of traffic analysis and filtering, can encapsulate an
interest inside another interest, which just describes a non-specific destination.
Such an interest is similar to sending an interest to a service rather than to a content
object. Obviously, such an interest cannot be cached, so this approach will require
that the interest be sent all the way to the point where the encapsulation is undone.
Alternatively, parts of the interest can be encrypted using the public key of a router
along the path. Assuming that the routing protocol carries the packet to that router,
the next segment of the interest can be revealed.

Protecting the network infrastructure. The NDN project includes a design for a
secure OSPF, where routers are assigned keys in a hierarchy rooted in the domain,
and sign routing messages.

Security of interest packets. For data retrieval, the interest packet contains little
except the name of the desired data. However, there can be small amounts of
additional information encoded in the name in an interest packet, potentially
including authorization information or control information. In other words, interest
packets can be used to convey control information. In these cases, the authenticity
and authority of the interest packet needs to be verified, and the contents protected
from change. A key management scheme and the ability to sign an interest packet
are tools to make this secure.

Comparisons

Similarities

In general, all these schemes share a feature that distinguishes them from the
current Internet: a two-step rather than one-step name-to-address resolution
scheme. In the Internet, a high level name (e.g. a URL) is mapped to an IP address by
the DNS. This happens in one step. The IP address is being used as both an identifier
for the end-point and its location. All of these schemes have a separate identity and
location schemes, and separate mechanisms for mapping from name to identity and
from identity to location, except for NDN, which has effectively eliminated any
concept of a location. Most of the schemes have a way to assign an identity to things
other than physical end-nodes, including services and content.

In contrast to the current Internet, which uses IP addresses as a weak form of
identity for end-nodes, all of these schemes implement the idea that the identifier of
an end-point entity, whether a host, a service, a piece of content or the like should be
“self-authenticating”. Mechanically, this is done by making the identifier a hash of a
public key (or some other feature of the entity). Assuming that the entity holds the
private key, a challenge-response exchange can confirm to each end that the other
end is as expected. This check prevents many sorts of attacks in the network,
including DNS poisoning, packet mis-direction, and so on, from being successful.

However, detecting a failure or an attack is not enough to assure successful
operation—all it can do is give a clean signal of failure. To provide successful

operation in the face of these sorts of attacks, two more functions are required: first
a means to detect where in the network the failure or attack is happening, and a
means to avoid or “route around” this region. Many of these schemes contain
mechanisms to try to isolate the region of a failure, and many of them give the end-
point control over the route selection to some degree. This choice reflects a
preference for a basic design principle of the current Internet: since the network is
not aware of what applications are trying to do, the network cannot detect when a
failure has occurred. Only the end-points of the communication, which are aware of
the desired application semantics, can detect problems and attempt to restore
service.

With respect to routing, all these schemes take the view that the network is build of
regions (like the autonomous systems or ASs of today) that are separately managed
and deployed. The architecture gives the end-points control over routing at the level
of picking the series of ASs to be used, but give each AS control over its internal
routing. The control thus given to the end-node matches the granularity of the
business relationships among operators.

While XIA seems to have a richer set of IDs (HID, SID, CID) compared to Mobility
first with its GUID, the MobilityFirst GUID includes a component called the SID,
which effectively qualifies the GUD with respect to how it is treated inside the
network. It specifies different treatment, just as the different XIDs do. When the
GUID is looked up, the GRNS must return the sort of information needed for the type
of SID, for example an list of anycast addresses for the anycast SID. In NDN, the type
of forwarding that applies to interests (e.g. possible flooding or multicast) is not
specified by the name of the information being sought, but by the configuration of
the router. In Nebula, different services can be invoked by the label associated with
the POC at each stage of the forwarding.

Important differences

NDN used structured names for information, which function as routable addresses.
XIA puts several sorts of IDs in the header, including a flat ID of the service or
content, and as a fallback, a network address at the level of a domain. It is assumed
that the flat ID is routable inside the domain. MobilityFirst assumes that there is a
global distributed table that can map from a flat ID to a network address NA that
might have the granularity of a domain (AS) today. Like XIA, it puts both the flat ID
and the domain-level routable NA in the header, but in a less flexible format than
XIA, which can allow several options in the header to drive forwarding. Nebula uses
arich form of source address that specifies the route at the level of an AS.

NDN is distinctive, compared to the other three proposals, in that it puts per-packet
state in the router, and explores what can be done in exchange. In particular,
packets carry no source address—they lay down “bread crumbs” in the router as
they flow toward the information, and the returning information cleans up the
crumbs. So looking at a packet reveals what is being sought, but not who asked for it.

Values in Design Council presentations/discussion

As part of the FIA process, NSF has funded Helen Nissenbaum from NYU to assemble
a group of experts from the fields of social science and law, to participate in these
group discussions and give reactions and insights. Five members of that group were
at this meeting, and discussed a variety of topics.

The concept of values in design.

In their introductory comments, they offered three options for thinking about the
values in design movement. The first option, which is the basic message, is to be
sensitive to the value implications of your designs. The second option is to assume
you are being told to make the right choices. This is not actually the message, since
your training in computer science does not especially qualify you to make these
decisions. Ideally, they would be made by a larger cross-section of stakeholders, and
what would be in place as part of the design process is a coupled “values design”
process. The third option is to make sure there is enough flexibility in the system so
that good options are not precluded.

Some of the FIA designers responded by saying that their design preference would
indeed be to “add lots of knobs” to the system so that the values and policy could be
adjusted later, but to that point there was also pushback from the VID group: there
is no such thing as technology so flexible that it is value neutral at the core. Being
sensitive to the residual embedded values is a critical part of the message. And if
systems have “knobs”, system designers should attempt to articulate the range of
values that the system can capture.

Values in design does not mean one must achieve perfection. That criterion would
paralyze any designer. We must be prepared to soften what we try to do so we have
room to act.

One of the consequences of being sensitive to values implications is that it helps to
discover tensions among values. Values do not usually exist in isolation; they are
part of a context with contention among values. The idea above of a “values design”
process that involved different stakeholders is to identify and air these contentions.
However, there is an important distinction between values that are sorted out at
design time (in a values design process) and those that are sorted out at “run time”
by fighting over the knobs, and “messing with the architecture”, examples of which
might include firewalls in the current Internet.

Part of what must develop as part of the “values design” process is a common
framework to discuss the points of contention, a sort of pidgin English that hooks
the parties together. And the points of contention must also be expressed in the
features of the system, as well as the language of the stakeholders. It is important to
link the way values are expressed in words and expressed in the system.

Choice and defaults
Another point of view is that if there are choices, especially at run time, it is
important to ask who has control over those choices. One cannot leave these choices

to the ultimate end-user: that person is not a skilled professional, and cannot be
expected to set a large number of configuration parameters to “dial in” the values of
choice. As well, there is a tremendous imbalance of power between individual users
and the large actors that will control the platform and the applications. One way to
deal with this is to try to set the choices to a default that respects the anticipated
value preferences of the end-users rather than the more powerful actors, to“tilt the
playing field” in favor of the users, but this point of view begs the question of how
the architecture could possibly control the default setting of parameters that are
intended to be adjusted at “run time”. But “opt-out” approaches that require explicit
action by the end-users seem to lead to outcomes that do not align with preferences.

(An afterthought—perhaps the identification of explicit control points helps bring to
the attention of regulators where they have the option of intervening, a fact that
even they may not be easily able to find. The role of the regulator cannot be ignored
here, since it was asserted that with respect to privacy, what we have today is a
clear market failure.)

Since people cannot be expected to find every “value setting” in a system, or
understand exactly what it does, it may be a defensible approach with respect to
values design just to pick setting in cases that do not seem as critical to the outcome.
Fixing them in the design, even if imperfectly, may be better than allowing actors
with power to mess with them. Leaving all the tussle to run-time does not respect
the actual power balance.

Because several of these systems have more scope for choice, as opposed to fixing
one mode of operation, powerful actors may be able to seize control of these choices
to shape the network to their interests. The VID speakers pointed out that choice
may not be the friend of the user, but instead the way that different powerful actors
(e.g. the U.S. or China) can shape the Internet that their citizens have.

Because there is a real imbalance of power between the end-users and the range of
powerful actors that design and operate the Internet and its applications and
services, it was suggested that a design might have the goal of making some sorts of
actions by the more powerful actors possible but hard. Examples included lawful
intercept and traffic analysis. It was suggested that traffic analysis should be made
“hard but possible” by design. Such a design might not depend on technical means to
increase the work factor, but instead on the need for two or more actors to be
required to cooperate in order to carry out the interception. Designs that require
collaboration amongst two sorts of actors can protect against a change of heart in
one.

Security as a privileged value

Speakers pointed out that the particular topic of security seemed to be a privileged
value, not just at this meeting where it was the assigned topic of discussion, but
elsewhere as well. IETF RFCs must have a mandatory section that discusses security

implications. Are there other values that should be similarly privileged, such as
privacy?

In fact, a counter position was offered that at the level of architecture, security was
not a value. Security is a property that emerges through the combination of
mechanism, operational decisions, and the like. Few of the presentations positioned
their mechanisms in a larger context of operational and deployment options.

Defining security

At the same time that security seems to be a privileged value, it often went
undefined in this meeting. Security was described as much by mechanism as by
requirement, which necessitated the back-deriving of the intended value from the
design spec. In the talks, there was a lot of discussion of self-signing identifiers, but
much less discussion of the various implications of such a design, a fact that
triggered a lot of questions from the observers at the meeting. An example of this
was that it seemed that control of mis-direction (e.g. control of phishing) was a
much higher priority than regulating traffic analysis. The SCION scheme seemed to
have lots of potential value issues inside that had not been brought out in the
discussion of mechanism.

Case studies

Several speakers pointed out that discussion of values in the abstract is sometimes
not effective; it can be too vague to illustrate the real tradeoffs. Several examples
were offered in the context of this discussion.

* Law enforcement agencies regularly use traffic analysis (e.g. tracking of
source and destination addresses) as a tool of investigation. A scheme that
makes this harder (e.g. NDN) may trigger resistance from the government.
Whether this sort of resistance would be effective was debated, but the point
is clear—most value assertions, once they are made concrete, are contested.
A specific approach here is that perhaps a system could be designed so that
traffic analysis was possible but hard. A challenge to the research (security)
community was whether it was possible to design mechanisms that made
things not impossible but “robustly hard”.

* TOR s currently an overlay that could not possibly scale to protect all the
traffic in the Internet. One point of view was that if a service like this were
around, it should be available to anyone—protection of this sort should not
just be available to those who can pay. But making this universal might
trigger the pushback just mentioned. So perhaps every project should have a
graduate student look at what a TOR-like mechanism would look like in their
architecture.

* (Caching was a central idea in several of these schemes. Are there value issues
in the decisions as to whether to cache, and how and when to clear the cache
of older content?

* Since a future Internet should aspire to be a global infrastructure, how do we
deal with variation in global values. Some values we hold may be somewhat

U.S.-centric, but human-rights norms should be universal, not seen as U.S. On
the other hand, a perspective of cultural relativism suggests there are cases
where we should be justified in designing systems that conform to norms
different from ours. This aspect of the design space is tricky, especially when
we take into account the tremendous imbalance of power among the
different actors. Where and how could a conversation about these issues take
place?

Dynamics and evolution

One criticism of the designs (and their presentations) was that they seemed to
define security as a static, design-time property, while real security management is
an ongoing evolving process. Deirdre Mulligan mentioned her recent work with
Fred Schneider that takes the point of view that one should talk about “managing
insecurity”, by analogy to the way we manage illness through the public health
system. It was hard to jump from the mechanisms presented here, which seem to
stress end-to-end validation of identity, with all the things one might want to do to
manage insecurity, which might include such things as isolation of infected regions
or implementation diversity and herd immunity.

Systems like this, if successful, might last for 50 years or more. What, over that time,
will need to change? Different parts of the system may need to change with different
time-constants. Are the rates of change among different parts lock-stepped? Can you
imagine various sorts of catastrophes that might trigger (or demand) sudden
change?

Norms and values can also change fast. Not that long ago, there were protests in
Australia about a national identity card, but recently they were deployed without
protest.

It may be helpful to have some future-facing case studies—the “science fiction” of
the future Internet’s success, as a lens to look at the design decisions. Find some that
build in your values in the best way, and some that perhaps do not.

Summary security comments

Requirements and mechanism

All of the talks seemed heavy on mechanism and light on discussion of requirements
and consequences. It was necessary to teach the mechanisms, since otherwise the
listeners would have no idea what was going on, but it would be helpful to work out
stories (perhaps “success scenarios”) of how the mechanisms provide

Red teams and the embedding of attackers

In several contexts, the security observers urged that the projects embed a “friendly
attacker” in their design teams. As one person put it, a graduate student who has
just designed a neat new mechanism is not the best person to find its flaws.
Challenge yourselves to identify your soft spots and deep assumptions. The parts

you like the most are likely to be the most troublesome, because you may not have
scrutinized them because you like them. NSF expressed a willingness to provide
supplemental funds for a well-formulated plan of red-teaming and outside
vulnerability assessment.

Quote of the day: “If you don’t embed an adversary in the design of the critical
mechanisms [key management and trust management], your system will have as
much chance as a paper cat chasing an asbestos rat through hell.” (Earl Boebert)

Public keys

All these schemes use public-private key pairs to allow validation of transactions.
NDN uses keys belonging to the content provider to sign the packet, so that anyone
with the public key of the provider can confirm that the packet is not a forgery.
Nebula uses keys belonging to each actor that has a policy with respect to the route
to sign the Proof of Consent for the route.

Because of this emphasis on pubic keys and PKI, there was a lot of discussion about
the problems of key management. In general, the security observers thought that
key management would be a major source of vulnerability. A system penetration
could lead to the theft of the associated private key, and the need to replicate that
key at all replicas of the associated service or content increased the potential of the
vulnerability. Several of the discussions stressed the issue of revocation of keys, and
the problems of key continuity. Some of the architects stressed that the design of the
key management system was an end-node issue, and thus outside the bounds of the
architecture. This point of view actually seems to increase the vulnerability of the
system, since the design of this part of the system is being left to people who may
have less experience and skills than the system architects.

Trust management and roots of trust

Essentially all these schemes try to avoid the problems that have arisen from the
hierarchical nature of DNS, and its dominant role as a naming service, by allowing
multiple naming services to co-exist. The goal is to avoid a single “root of trust”.
However, this approach raises its own set of issues, which in general have not yet
been resolved. Again, for all of these systems the observers questioned this
approach, for two reasons.

The first was a doubt that there can actually be a “root-less” system. If there are
multiple disjoint naming systems, then there has to be some convention that guides
the potential user of a name to the correct service to look up its binding. One could
put the name of the name service as a prefix to the name, but this just re-created the
rook of the tree. One could try to avoid having actual “root servers”, by distributing
the information out of band, but one must still begin by finding the machine that
hosts the relevant name service. In what name space is it named?

The second was a doubt that the users could actually cope with this range of choice,
especially if the choices had to do with trust-related decisions. It seemed to many

observers that the system and its users would settle on a default (just as DNS
became a default—DNS is not mandated in the architecture).

In general, there were a lot of concerns about which elements in the network must
be trusted, and to what extent. Some of the teams suggested that a user would
naturally trust their access provider, but others asserted that based on what is
happening today, access providers are not trustworthy at all, and should be limited
to the most basic of actual packet forwarding. Other people suggested that people
would trust their end-device, but again, given the user monitoring that has gone on
with devices today (e.g. location tracking) this assumption was challenged as well.

A general suggestion from the security observers was that each project should do a
complete audit of their “trust design”. They should consider:

* The extent to which each element and class of element needs to be trusted.

* How that need for trust could be minimized.

* What happens if that trust is violated.

* How a violation of trust could be detected?

* Architectural methods to allow cross-checking and validation of trust
assumptions.

One of the observers used this illustration. When you design a system that
incorporates many actors, you should think through what happens if one of the
actors changes his role or allegiance? Viktor Mayer-Schoenberger, in his book
“Delete: The Virtue of Forgetting in the Digital Age” talks about the difference
between the fate of the Jews in Holland and France. The French, with a cultural
tradition of not fully trusting their government, kept many personal facts to
themselves. The Dutch, as good citizens, were more forthcoming about things like
census data. When the Nazis took over Holland, many more Jews were rounded up
there than in France. The government turned from friend to adversary, and system
designers should contemplate this sort of outcome with any powerful actor in the
system.

The definition of “user”

In many of the conversations about different systems, there was a degree of
confusion between “user of the architecture”, who is an application designer, and
the human user at the end point of the operating system. When trust decisions and
choices were “left to the user”, it was not clear if this was the application designer,
the actual human (e.g. in the example of users with different levels of concern about
privacy), or some service that a user decided to trust (and delegate decision-making
to) at run-time. The observers urged that the designers pay careful attention to this
distinction, and be clear what they were thinking about when they said “user”.

Beyond this point, there were several other comments about users.

* When you think about the human user, do not think of one user in isolation.
Users collaborate to carry out a task, and they collaborate to sort out choices

related to trust and other social aspects of the system. The system should
contemplate the ides of the user in the aggregate, not in isolation. And do not
assume that the community of users is homogeneous. Designers must not
lose track of the diversity of real users.

* While there was a strong encouragement to distinguish the application and
its designer from the human user, the same tools of analysis might be
applicable to both. Asking the same questions of both, using the same sorts of
analytical reasoning, tools and methods to study them, may open up some
questions not otherwise considered.

Privacy

Because several of these schemes imply greater revelation in the network of what is
being done, there was a lot of discussion about privacy, and (at the packet level)
traffic analysis or transactional data (who talks to whom).

* Those who have studied privacy believe that there is an intractable market
failure around privacy. If one is concerned about privacy, one must bake in
defaults that favor the user over the more powerful actors.

* The question of whether users actually care about privacy is a long-standing
one, with answers that seem to vary over time, from culture to culture, and
depending on how the question is asked.

* Leaving choice to the market to lead to poor choices. Market pressure could
not give us safe food or safe medications. Why should market choice give us
privacy, which is a pretty subtle item to specify or understand?

* One way to understand the design and selection in a space of choices is to
model it as a multi-player, long-term, multi-round game. Ask what the
incentive structure is, and how the actors fit into the game.

* Asavalue assertion, privacy should not be a luxury of the rich. It should be
an essential service. There is perhaps a tension between privacy as
something you can get from providers that care, if you can obtain service
from them, and a embedded preference for privacy in the architecture.

The work of Alessandro Acquisti at CMU was cited as a good source of information
in this area.

With respect to the power of traffic analysis to learn what is going on without
looking in the packets, the work of Vitaly Shmatikov (Texas) and Arvin Narayanan
(Stanford) was recommended. They look at de-anonymizing of networks. It was
observed that one of the reasons that NSA went along with relaxed concerns over
strong encryption is they found traffic analysis (transactional information) so rich.

Given the reality that powerful actors will have incentives to manipulate the system
(e.g. to observe traffic, whether for law enforcement or behavioral profiling to
support ad placement) we should assume that the network will exist in a legal
framework. Rather than trying to solve the whole problem by technical means,
perhaps we should co-design a model legal regime to describe the bounds of

acceptable behavior, and demand of the technical design that it make it easier to
separate and distinguish the two.

Attacks on the network

There was relatively less attention paid in the various talk to protection of the
network itself from attack, and more paid to protecting a communication from
attack. This may be justified, since much is known today (if not deployed) about how
to secure routing protocols from attack by malicious actors. However, these
networks are more complex, with more components and classes of actors. It was
suggested that each project should review the value of the various components of
their system as attack targets.

Back to the questions

While the project presentations did not directly answer the security questions that
were included at the beginning of this report, many of the answers did emerge in the
discussions:

1) How does your design deal with attacks directed at the network itself?
There was partial attention to this topic, but perhaps less than some of the
observers might have expected. All the systems assume that their network is
build of regions that are not of equal trust. Rogue regions can exist, and must be
quarantined. The discussion of secure routing protocols was mixed, with some
suggesting that techniques derived from a variant of SBGP were a known
approach, and some suggesting that the implied key management was a serious
operational /policy problem. SCION (XIA) has regions of trust to try to isolate
larger groups of regions for routing. NDN has a version of OSPF with signed
routing information. In Nebula, routing and inter-region interaction are handled
in the policy plane, NVENT, which is not yet fleshed out. There were concerns
about the security implications of this complex layer. In MobilityFirst, there were
concerns about the security of the highly distributed GNRS. There was not a lot
of detail about global routing in MobilityFirst.
There was no discussion of the security of management protocols, or other
mechanisms that link regions.
There was limited discussion of routing diversity as a means to bypass failed
components, which could include physical failures and malicious failures, but
there was only superficial discussion about techniques to isolate such failures.

1a) To what extent does your design emphasize resilience/availability of the
network in the face of attack, as opposed to resistance to attack?

With respect to attacks on the routing protocols, the emphasis seemed to be on
detection and isolation.

2) How does your design deal with attacks on communication among end-points?
This question was central to most of the discussions. Integrity and
confidentiality were in general assumed to be an end-to-end solution, but self-

3)

4)

5)

6)

certifying IDs were used to detect redirection attacks and other mis-directions.
End nodes could verify the identity of each other, assuming that the higher-level
binding of user-meaningful name to ID was not corrupted. In some of the
schemes, propagation of public keys into the network would allow routers, and
not just end-nodes, to detect forged packets.

There was a lot of attention to the issues of trust, and the need for the system to
provide trustworthy versions of critical services such as name resolution.

The topic of traffic analysis received considerable discussion, as noted elsewhere
in the report.

How does your design attempt to mitigate attacks on end-nodes?

This topic received limited consideration. NDN has the most distinctive
character here, since the lack of host addresses preclude a large number of
attacks that depend on addressing packets to the target. Attacks on end-point
vulnerabilities are harder to contemplate in NDN, but a fresh analysis of attack
patterns would be needed for that design because of its novelty. Nebula is “deny
by default”, so probes of machines are less likely. But in both cases, delivery of
mal-ware is possible. XIA provides a more traditional source-destination
delivery pattern, as does MobilityFirst.

3a) Does your design include methods to deal with multi-stage attacks (using
intermediate nodes previously corrupted)?
There was no discussion of this issue.

3b) Does your design attempt to mitigate the consequences of end-node faults and
vulnerabilities?
There was no discussion of this issue, aside from discussion of DDoS attacks.

Does your design deal with information assurance?

Content identifiers that are a hash of the contents provide a means for a receiver
of information to verify its source and integrity. Higher-level issues (e.g. search
or name resolution) were described as outside the scope of these proposals.

How does your design deal with DDoS attacks?

NDN, because it does not have host addresses, does not support a range of DDoS
attacks, but residual options exist, as discussed in that part of the report. The
signed locator in MobilityFirst that binds the GUID to the NA prevents attacks
based on a falsified source address.

Does your design address the sorts of higher-level considerations listed below?

6a) National security: lawful intercept, traffic analysis.

This topic received a great deal of discussion, as described throughout the
report. NDN makes one aspect of traffic analysis harder by removing host
addresses. Most of the proposals, with the increased information in the headers,
seem to increase the potential of traffic analysis. Systems such as Nebula that
give the end-node some control over routing might be able to avoid regions

7)

8)

where these sorts of attacks were anticipated. The discussion from the floor
suggested a design goal of making lawful intercept and traffic analysis possible
but hard: none of the schemes discussed mechanism of that sophistication.
6b) Privacy; anonymous action.

Few of the systems had any tools to enhance privacy beyond end-to-end
encryption of content.

6¢) Control of delivery of illegal or forbidden content.

There was no discussion of this issue.

6d) Accountability; deterrence.

There was no discussion of this issue.

6e) DRM and content management.

There was no discussion of this issue.

What new sorts of vulnerabilities does your approach create? What are the "new”
security problems you will have to resolve? Can you identify points of (security)
failure with severe implications?

While there were specific points raised in the various presentations, none of the
projects had a methodical answer to these questions, and the observers stressed
the need to carry out this sort of assessment.

Has your group agreed on a threat model?

The groups did not give concise answers to this question, and again the
observers stressed the need to do so. It was important to describe the societal
context in which these systems were expected to function, and understand the
level of threat they were expected to deal with.

Reading list
Earl Boebert suggested the following books as good reading on aspects of thinking
about security.

Kathryn Schultz , Being Wrong: Adventures in the Margin of Error. The science of
“wrongology”: why we ignore evidence and hang on to our errors. Or see:
http://www.ted.com/talks/kathryn schulz on being wrong.html

Sam Adams, War of Numbers: An Intelligence Memoir. A revealing look at intelligence
analysis, illustrating what can be learned from traffic analysis.

Sissela Bok, Secrets: On the Ethics of Concealment and Revelation.

A final word

After the meeting, Earl Boebert, one of the outside observers, sent this summary of
his thoughts. Rather than integrate this into the text, | am including it as he wrote it:

“Here's a consolidated list of my concerns, FWIW. They address the issue I called
"deployability" at the workshop, that is, absence of showstoppers. I think this

criterion applies to all projects, whether they are intended to deploy, prove a
principle, or provide a point solution to a specific problem. The two showstoppers I
have most commonly encountered are the Magic Crypto Fallacy and the Benign
Environment Fallacy.

“The Magic Crypto Fallacy results when the system analysis and design begins with
the assumption that all crypto boxes on the net are properly keyed. This dodges the
essential and very hard design problem of establishing a chain of authentication
from some human authority to a dumb robot with crypto in it. Any deployable
system must address the emergency rekey problem, which, along with revocation,
are the Achilles' heels of public key crypto. If [lose my private key while the system
is operating and under attack then some really bad things happen. Issuing a new
public/private pair is impractical. If I try, [can no longer see any encrypted secrets
that I have cached or that may come my way between the time of loss and the time
the whole net has been rekeyed with the new public part. I likewise cannot
authenticate any messages in that interval. To rekey I have to reconstruct the chain
of authentication completely ("Hi. This is President Obama. Bo ate my smartphone.
Here's a new public key to use when when we talk. Have a nice day, and be sure to
vote Democratic in 2012." Looks silly to you, but you're not a robot.) This form of
emergency rekey is a subset of what in the old days was called OTAR, or Over The
Air Rekey. It is analogous to the in-band signaling the Bell System tried in the 70's
and we all know where that got them :-)

“So you have to escrow the private keys, which in the civilian sector opens up a
whole ugly set of issues pertaining to who keeps the escrowed keys and under what
circumstances can the Yoo Ess Gummint get their grasping hands on my private
bits. You also have to figure out a highly reliable storage system, because a dropped
bit in a movie is glitch but a dropped bit in a crypto key is a catastrophe.

“I should also note that crypto is a DoS attacker's dream. If the crypto system is not
properly designed, I can interrupt/step on traffic in such a way that your crypto
robot is so busy throwing away packets and resynching that it goes into the moral
equivalent of a catatonic state.

“The Benign Environment Fallacy is the assumption that nothing inside the security
perimeter (assuming that one can even be drawn in a network of mobile devices)
has been compromised. Fuggedaboutit. Supply chain attacks are trivial. Mobile
devices are lost and stolen. The mobile devices we are talking about are going to be
made to commercial standards, which means they'll cough up their stored secrets
readily. A deployable system must be able to detect and remove a compromised
node. Which means the crypto design must handle revocation. The only way this can
be done in the real world (compromised key lists being something less than a joke)
is to rekey the whole net while leaving the compromised sites off the call list. Not
pretty. Similarly, the designers need to consider the problem of humans with admin
privilege going south on you. Even less pretty.

And that's all I have to say about that :-)

Cheers, Earl”

